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The temperature dependence of the specific volume for polyethylene (PE) and poly(cyclopentyl 
methacrylate) (PC5MA) over 100-300 K for PE and 10-140 K for PC5MA, and for the rare gas solids 
argon (Ar), krypton (Kr) and xenon (Xe) over 4-83 K for Ar, 4-115 K for Kr and 5-150 K for Xe has 
been studied. Also, the pressure dependence of the specific volume for PE and poly(methyl methacrylate) 
(PMMA) over the pressure range up to 30 kbar for PE and 2 kbar for PMMA and for rare gas solids up 
to 30 kbar at low temperatures (4-150 K) has been studied. The temperature and pressure dependences 
have been examined using an equation derived by the homogeneous function method. The relationship 
for the temperature dependence used in this work is given by 

In T= AIZ"' T>>- l 

and that for the pressure dependence by 

Vo/V= B,(T)(P + PL(T)) m' 

where AI, n I and m I are constants, B~(T) and PL(T) are functions of temperature, V o is the volume at 
atmospheric pressure and Z is defined by Z =  {V-V(O)}/V where V(0) is V at 0 K. Values of n I for 
polymers and rare gas solids are in the range of 0.099-0.17 with h~ = 0.13, while m l values are in the range 
of 0.14-0.25 with t~ 1 =0.17 for the rare gas solids and 0.07-0.14 with rhl =0.099 for polymers. The 
Griineisen parameter 7G defined by Slater is calculated from the equation of state in this work; 7o = 4.89 
for polymers and 2.78 for rare gas solids. The difference in Yo for the rare gas solids and polymers is 
explained by taking into account the volume dependence of the heat capacity. 

(Keywords: equation of state; rare gas solid; Griineisen parameter; homogeneous function method; thermal expansion 
coefficient; isothermal compressibility) 

I N T R O D U C T I O N  

The equation of state for polymers and rare gas solids 
under an extremely low temperature and high pressure 
is very important  for understanding thermodynamic 
properties of solids such as thermal expansion or the 
vibration of molecules. The Griineisen equation of state 
is the most famous ~ and involves the Griineisen 
parameter  7G, which is a useful quantity for describing 
the volume dependence of vibrational frequencies in 
solids and is determined by various methods based on 
thermodynamic and spectroscopic data. For  polymers 
PVT and heat capacity data are essential. Extensive 
experimental studies on the P VT properties of rare gas 
solids such as argon (Ar), krypton (Kr) and xenon (Xe) 
over a wide range of temperatures and pressures have 
been carried out 2-~a. Similar studies have been carried 
out for polymers ~ 2-18. The importance of intermolecular 
interactions in polymers in the evaluation of 7c has been 
discussed previously t9-2~ with the interchain heat 
capacity, Cv.i,t~, being used instead of the heat capacity 
at constant volume, Cv. The volume or temperature 
dependence of ~'G has been discussed elsewhere 22-24. 

One main purpose of this work is to establish a simple 
empirical equation for the temperature and pressure 
dependence of the specific volume at low temperatures 
and high pressures based on the experimental data 
available. An essential difference between Yo for polymers 
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and rare gas solids is discussed based on a general ex- 
pression for "/c derived from thermodynamic expressions. 

D E R I V A T I O N  OF T H E  E Q U A T I O N  OF STATE 
BASED O N  T H E  H O M O G E N E O U S  F U N C T I O N  
M E T H O D  

A general procedure to derive a thermodynamic function 
such as f(V,  T), from a derivative, such as (Of/OV)T, 
based on the homogeneous function method is presented. 
It is assumed that the function f(V,  T) is constant or 
zero at 0 K and expressed by: 

f(V,  T)=aV(~f/c3V)T{[V-- V(O)]/V}b +g(T) (!) 

where a and b are constants, 9(T) is a function of 
temperature and V(0) is a constant volume, such as V 
at 0 K. By differentiating equation (1) with respect to 
volume at constant temperature: 

(Of /O V)T = a(Of /O V)T Zb + a V [O(Of /O V)/c3 V]TZ b 

+ aV(~f/OV)TbZ °- I(OZ/OV)T (2) 

where Z is defined by 

z = I v -  v ( o ) ] / v  (3) 

By dividing equation (2) by aV(Of/OV)T Zb, which is not 
zero if V 4: V(0) and then integrating with respect to 
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Figure  i Plot of V ~ versu.~ (In T)  7~:~ for Kr at  sa tu ra ted  vapour  
pressure 3 

volume at constant temperature, then: 

(i~I'/(?V)T= C(T)(VZb) -1 expa  -1 (VZh) -1 dV(4) 
VlOl 

and from equations ( ! ) a n d  (4): 

;/ .f(V, T l = C ( T ) a e x p a  -1 (VZh) -~ d V + g ( T )  (5) 
(01 

Also, from equations (4) and (5): 

(~ I /~ '  v )T = { . f (  I/, T )  - ,q(Y)}/{a( VZb)} 
In the case of f = T, from the definit ion of the thermal 
expansion coefficient C~p: 

(g'/',"(~ V )p  = ( ~ p V ) -  1 (6) 

By using equation (5) and assuming g(P)= 0, equation 
(6) leads to: 

%T = AoZ"" (7) 

where A o and n o are constants. In the case of isothermal 
compressibility, using the same procedure as for %: 

(?P/?V)T = -- (Vflm)- 1 (8) 

and 

( ~ ; p / c q V )  T = _ C I ( T ) ( V Z  b, )-1 

x e x p  - m ~ l  (VZh,) - l d V  (9) 
o 

Because lIT ¢ 0  at 0 K, it is determined that b~ = 0  and 
therefore: 

(,?P/,?V)T= -{C,(T)/Vo}(V/Vo) -~"' ' - '  (10) 

and P is given, using equation (lO), by: 

P=m~CI(T)(V,,,'Vo)-""- PL(T ) (11) 

where m~ is a constant and C~ (T) and PL(T) are functions 
of temperature. It is useful to rewrite equation (1 I) as: 

( Vo /V  ) = B ~ ( T ) ( P  + PL(T))"'  (12) 
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where B I ( T ) =  [mlCI(T)]-"'. On the other hand, the 
temperature dependence of the specific volume V is 
derived from equation (7): 

I n T = l n T o + A d  I (VZ"")-IdV (13) 
'~0~ 

and is given approximately by: 

In T= A.ZI-""= A1Z "' T>~ I (14) 

wheren l = l - n o , A l = { ( l - n o ) A o l  1 and T o = l  K. 

RESULTS 

Typical plots based on equations (12) and (14) and 
experimental data available for polymers and rare gas 
solids are shown in Figures I 4. The values of constants 
and indices determined by best fit are given in Tables 1 
and 2. Values of nl for polymers and rare gas solids are 
in the range of 0.099-0.17 with h I = 0.13, while m~ values 
are in the range of 0.14-0.25 with rhl = 0.17 for the rare 
gas solids and 0.07 0.14 with rh 1 = 0.099 for polymers. 
The term 7(; defined by Slater 25 is expressed as: 

7c~.~ = - ( 1 / 6 )  + (1/2)(?In f l , /~ In V h (15) 

The 7~.~ calculated using equations (10) and (15) is given 
by: 

7o.~ = ( 2m l )  1 - ( 1 / 6 )  (16) 

and ~;G.~ = 4.89 for polymers and 2.78 for rare gas solids. 

DISCUSSION 

An original expression for 76 is given by: 

7G = --(d log vi.j,.'d log V1 (17) 

where vi. ~ is the frequency of the normal mode and is 
reduced to a more useful expression by using the thermal 
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pressure coefficient 7v; 

)'~ = V ? v / C  v (18) 

W a d a  et  al .19 p r o p o s e d  )'G for  a p o l y m e r  c ry s t a l :  

?G = V?v /Cv , in t c r  (19) 
where Cv,in,er is the interchain heat capacity of 
t h e  p o l y m e r .  By u s i n g  t he  t h e r m o d y n a m i c  r e l a t i o n  
( S S / O V ) T  = 7v a n d  a s i m i l a r  p r o c e d u r e  as  in e q u a t i o n s  
( 1 ) - ( 5 ) ,  t he  f o l l o w i n g  r e l a t i o n  is d e r i v e d :  

f/ 7v = C 2 ( T ) ( Z # ' / V )  exp a~- ~ Za'/V dV (20) 
1o) 
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Figure 3 Plot of In V -  t versus ln(P + 5.44) for Xe at 30 K 9 Figure 4 Plot of ln V -  l versus ln(P + 3530) for PE at 296.2 K '" 

Tab~ 1 The constants and indices in equation (14) for rare gas solids and polymers 

A 1 n I V(0) (cm 3 g - ' )  

Kr 6.63 0.140 0.3233 

Ar 6.08 0.128 0.5646 

Ne 4.57 0.116 0.6635 

Xe 6.88 0.138 0.2645 

7.44 0.164 0.2643 

7.97 0.159 0.2526 

8.07 0.149 0.2435 

8.46 0.156 0.2361 

8.60 0.153 0.2300 

8.60 0.150 0.2247 

PC5MA" 7.84 0.115 0.8388 

PCHDMT b 8.94 0.135 0.7986 

PE (32 days)' 7.97 0.109 0.9524 

PE 12.5 h) 7.84 0.104 0.9538 

PE(Quench) 7.81 0.103 0.9542 

Oxidized PE 8.29 0.141 0.9662 

8.04 0.126 0.9599 

8.27 0.128 0.9469 

7.90 0.109 0.9422 

PE(mono) (A) 0.105 

PE(ortho) (A ) 0.100 

"PC5MA, poly(cyclopentyl methacrylate) 
bPCHDMT, poly-l,4-cyclohexylene dimethylene 
"Crystallization for 32 days at 402.9 K 

Temperature 
P (kbar) range (K) Ref. 

SVP 4-115 3 

SVP 4-83 2 

SVP 3-23.5 4 

SVP 0-75 28 

0 0-150 9 

2 0-150 9 

4 0-150 9 

6 0-150 9 

8 0--150 9 

10 0-150 9 

10-140 16 

10- 140 16 

93-333 15 

93--333 15 

93-333 15 

0.001 296-424 29 

0.72 296-424 29 

2.10 296-424 29 

2.79 296--424 29 

100- 300 30 

100-300 30 
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Table 2 

,LHe 
3He 

N2 

H: 

D2 

Ne 

Xe 

Kr 

Ar 

PE 
PE 
PE 
PE(high Mw) 
PE(branched) 
PE(branched) 
PE(branched) 
PE(DA )" 
PE(DA) 
PE(DA) 
pE(('EC) h 

PEIMA)" 

PE(CEC) 

PE(oxidized ) 

PCHMA '~ 

PMMA" 

aDA, drawn and annealed 
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The constants and indices in equation (12) for rare gas solids and polymers 

T (K) m l 

4.2 0.232 
4.2 0.241 

65.0 0.192 

4.0 0.228 

4.(I 0.231 

4.(1 0.166 

0.0 0.166 

30.0 0.164 
64.0 0.160 
90.0 0.160 

130.0 0.150 

160.0 0.142 

4.0 0.158 

20.0 0.154 

40.0 0.149 

77.0 0.148 

90.0 0.145 

110.0 0.145 

4.0 0.159 

20.0 0.159 

40.0 0.156 

60.0 0.148 

77.0 0.148 

296.2 0.113 

298.7 0.123 

292.7 0.071 

291.9 0.088 

292.3 0.085 

341.7 0.082 

382.8 0.098 

293.0 0.087 

293.0 0.142 

293.0 0.088 

293.0 0.107 

298.0 0.096 

403.0 0.116 

296.2 0.097 

323.2 0.100 

291.8 0.089 

290.4 0.103 

vo 
(cm 3 g. a) 

4.240 
4.387 

1.046 

11.240 

4.851 

0.694 

0.264 

0.267 

0.272 

0.279 

0.286 

0.294 

0.323 

0.325 

0.329 

0.341 

0.346 

0.355 

0.565 

0.567 

0.577 

0.592 

0.608 

1.091 

.087 

.021 

.078 

.072 

.112 

.194 

1.036 

1.043 

0.908 

0.844 

P~ Maximum P 
(bar) B l (kbar) Ref. 

154 0.267 20.00 7 

177 0.249 20.00 7 

2708 0.219 1864 6 

579 0.233 19.62 6 

922 0.206 19 62 6 

1972 0.283 19 62 6 

6330 0.235 20 00 9 

5440 0.244 20.(X) 9 

4690 0.259 2000 9 

4030 0.265 20.00 9 

2820 0.301 20.00 9 

2170 0.336 20.00 9 

5550 0.256 20,00 9 

5050 0.269 20.(X) 9 

4460 0.287 20.00 9 

3410 0.300 20.00 9 

2890 0.314 20.00 9 

2405 0.323 20.(X) 9 

4800 0.260 20.(X) 9 

4615 0.261 20,(X) 9 
3880 0.276 20.(X) 9 

2970 0.307 20.00 9 

2450 0.315 20.1X) 9 

3530 0.3976 30.00 14 

4580 0.3550 30.00 12 

3180 0.5652 2.00 31 

2540 0.5105 2.00 31 

2540 0.5154 2.(X) 31 

1430 0.5512 2.00 31 

730 0.5261 2.00 31 

4250 (.1.4834 2.94 18 

8970 0.2739 7.85 18 

3460 0.4900 3.90 17 

4080 0.4118 3.90 17 

5960 0.4325 13.70 32 

4(180 0.3584 3.90 17 

4970 0.4381 4.00 29 

4720 0.4305 4.00 29 

3480 0.4829 2.00 31 

3885 0.4287 2.00 31 

bCEC. chain-extended crystal, isothermally crystallized at 5000 kg cm 2 
'MA, moulded and annealed (unoriented) 
aPCHMA, poly(cyclohexyl methacrylate) 
~PMMA, poly(methyl methacrylate) 

T h e  Cv is re la ted  to  Yv t h r o u g h :  

(?Cv/? V )t = T(C~Tv/C?T)v (21) 

A gene ra l  e x p r e s s i o n  for  Cv as a f u n c t i o n  o f  t e m p e r a t u r e  
a n d  v o l u m e  is g iven  by:  

f/ ;o Cv = (gCv/'~?VIT d V  + (~?Cv/~?T)v dT  (22) 
(o) 

By us ing  the  a s s u m p t i o n s  t h a t  Cv = Cv(V, 7" )+  Cv(T) 

a n d  Yv = 7v(T)Tv(V) for  e q u a t i o n  (20), t h e n :  

7~ 1 = 2[d  In "~,v(T)/d In T ] / [ d  In S(V)/d In V] 

+ Cv ( T ) /VTv  (23) 

where the entropy S(V) is defined by S(V) = }'/to) 7v(V) d V 
and equation (21) is used. The first term in equa- 
t ion (23) is a contr ibut ion from Cv(V, T)  in Cv or 

v 
SV(o) (?JCv,/?~V).rdV = T Sv(o)(CTv;"~?T)v dV, whi le  the  
s e c o n d  t e rm is f rom Cv(T)in  Cv = Cv(V, T) + C v ( T  ). In 
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Table 3 The constants and indices in equation (24) ~ for rare gas solids and PE at constant volume 

V (cm 3 m o l - l )  b A 2 x 103 B 2 ko Ref. 

A r  19.00 0.07 9.38 2.20 11 

20.00 0.49 5.39 1.79 11 

21.00 1.32 2.63 1.59 11 

22.00 2.08 0.72 1.51 I 1 

Xe 29 .00  4 .90 13.00 1.23 11 

30.00 3.73 9.22 1.29 11 

31.00 3.70 6.33 1.29 11 

32.00 4.73 4.03 1.27 11 

33.00 4.85 2.19 1.25 11 

34.00 5.25 0.81 1.23 11 

K r  23.00 2.68 8.08 1.55 11 

24.00 2.68 6.31 1.41 11 

25 .00  4 .37 1.53 1.31 I I 

26 .00  5.90 1.53 1.25 11 

27.00 2.30 1.56 1.31 11 

PE( l inea r )  1.02 111.6 x 1 0 - "  - 1.03 2.84 31 

1.03 2.55 x 10 -~ - 1.10 3.45 31 

PE(high M~) 1.07 65.5 x 10-  7 - 0 . 8 7  3.34 31 

PE(branched) 1.07 31.8 x 10-  ~ - 1.02 3.46 31 

PE(high M , )  1.09 2.95 x 10-  ~ - 1.04 3.83 31 

1.10 0.77 x 10 -v  - 1 . 1 9  4.05 31 

1.11 0 .166  x 1 0 - ;  - 1.22 4.29 31 

"Unit of P in equation (24) is kbar 
bUnit for PE is cm 3 g -  t 

Table 4 The values of Cv(V, T)  calculated by using equation (26) and the ratio Cv(V, T).'Cv ~o,~ for krypton and P E  

Temperature (K)  Cv(V, T) (cal mol -  ' K -  1), C,,. ,o,,~ 

Kr b 10 0 .0009 1.4098 

20 0 .0060  3.7115 

40 0 .0314  5.1537 

60 0.0711 5.4487 

80 0 .1250  5 .5060 

100 0 .1950  5 .5320 

P E '  195 0 .0070  0 .2620  

303 0 .0736 0 .3820  

"Unit for PE is c a l g - I  K - t  
bk o = 1.3 I, A 2 = 2.30 x 10-  ~, V o = 27.093 cm 3 mol - 1 for  V = 27.0 cm 3 mol - 1 
'ko = 3.34, A 2 = 6.55 x 10 -~,  V o = 0 .947 cm 3 g -  t (ref. 34) for  V = 1.07 cm 3 g -  t and PE(high M , )  31 

Cv(V. (%)  T),/Cv.,o,,i Ref. 

0.06 3 

0.16 

0 .609 

1.31 

2.27 

3.52 

2.67 33 

19.30 

estimating two terms in equation (23), the temperature 
dependence of ";v at constant volume is necessary. The 
experimental data of the P versus T line at constant 
volume are expressed approximately by: 

P = A 2 Tk" + B2(V) V = constant (24) 

where A2 and ko are constants and Bz(V) is a function 
of volume. Values of A 2, k o and B2(V)are  listed in Table 
3 where ko for rare gas solids is in the range of 1.2-2.2, 
while that for polyethylene (PE) is in the range of 2.8-4.3.  
Equation (23) may be expressed using equation (24): 

7c, x = 2~x(ko _ 1)Z-#,  + C v ( T ) / V 7  v (25) 

where S ( V ) = = ~ e x p ~ - ~  p'  7 t ~ , / v d V  is used. It is JV(O) L, t r 
possible to evaluate Cv(V, T) from the experimental data 
of P versus T at constant volume by using equations (21) 
and (24): 

Cv(V, T ) =  Azko(k o - I )Tk° -~{V  - V(0)} (26) 

The typical values of Cv(V, T) from equation (26) are 
shown in Table 4 where the ratio Cv(V, T)/Cv,tota~= 
0.06-3.52% for Kr and 2.7-19.3% for PE, and both 
ratios increase with increasing temperature. Although the 
contribution of Cv(V, T) to Cv.tota~ is small in both cases, 
the contribution of Cv(V, T) to 7G through equation (23) 
is not always negligible because 7c relates to k o in 
equation (25) and not to Cv(V, T) directly. It is interesting 
to point out that the ratio of Cv.i,ter for the interchain 
contribution for Cv,tota I reported by Warfieid 2° for 
various polymers is in the range of 6-21%, which 
compares with that of Cv(V, T ) / C v , t o t a  I for PE. We cannot 
determine the first term in equation (25) because ct~ is 
unknown. However, the first term becomes negligible if 
ko is nearly equal to 1.0, which means 7v = . f (V)  and 
Cv = g(T)  and therefore 7G = ~'vV/Cv(T) = ":vV/Cv. On 
the other hand, if the first term in equation (25) is 
dominant, YG is given by 7o = Za'/[2~t,(ko- 1)] where 
k o > 1.0. It is suggested that the former case corresponds 
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The empirical equation for Pc is Pt,,x, = 6.34- 2.57 x 10-2T for Xe 
and Pc.K, = 5.65 2.97 × 10- 2T for Kr 

to rare gas solids while the latter corresponds to 
polymers. 

It is impor tan t  to determine the functions such as PL(T)  
in equa t ion  (12) and B 2 ( V )  in equa t ion  (24). In Figure 
5 PL(T)  is plotted against  temperature  and  linearity is 
observed for Kr  and Xe. The function P L ( T ) i s  given by: 

P c ( T )  = PL.O -- C o T  (27) 

The term B z ( V )  from equat ion  (24) is given by: 

B z ( V )  = P(V)T-  o (28) 

where P ( V ) t =  o is the P ( V )  funct ion at 0 K and using 
equat ions  (12) and (27) is given by: 

P(V)T= o = IBm-' V ( T = 0 ,  P = O ) / V ( O ,  p)] , ,c '  _ Pc.o (29) 

It is very interesting to refer to the equat ion  of state 
derived by many  authors.  Gi lvarry  has given an 
isothermal equat ion  of state, which can be expressed as:3: 

P = ( n -  m ) - ~ K o [ ( V o / V ) "  - ( V o / V ) "  ] (30) 

where K o is the bulk modulus  corresponding to the 
normal  volume V o, and n and m are constants .  The bulk 
modulus  K = flat ~ from equat ion  (30)is :  

K = ( n - m ) I K o [ n ( V o , . " V ) " - m ( V o / V ) "  ] (31) 

The Birch equat ion  of state is obta ined from equat ion 
(30) with n = 7/3 and m = 5,,'3, which was derived from 
M u r n a g h a n ' s  theory of finite strain z~'. M u r n a g h a n  2" 
derived the equa t ion  of state such that:  

P = n  ~ K o [ ( V o / V ) " - I ]  (32) 

which corresponds to equat ion  (30) with m = 0. On  the 
other hand,  the usual Tait  equat ion  has been writ ten in 
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Table 5 Comparison between the experimental values of specific 
volume for H, and calculated values from equation (12) 

P (kbar) V at 21.9~C (exp.) V ~ (calc.) 

1 1.000180 1.00001 
2 0.996209 0.99618 
4 0.988996 0.98891 
6 0.982254 0.98210 
8 0.975916 0.97569 

10 0.969933 0.96965 
12 0.964262 0.96393 

" V = 1.52496(P + 30.418) -°'12'" in P (kbar) where V(exp.)--P data ts 
taken from the unrounded Davis-Gordon P versu.~ V results 35 for Hg. 
The volume is not measured directly 

the form22: 

Vo - V = C l n [ ( B  + P)/(B + Po)] (33)  

where B and C are constants  with respect to pressure 
a n d P o i s P a t  V = V  o. 

Equa t ion  (12) in this work is similar to equa t ion  (32) 
if equat ion  (32) is arranged to ( P + n - t K o ) =  
n -  ~Ko(Vo/V)" .  Macdona ld  ~2 has examined some experi- 
mental  and analytical  equat ions  of state including four 
different polynomial  equat ions  and seven non- l inear  
equat ions  based on the recent water and mercury (Hg) 
isothermal data  and stressed that certain polynomial  
equat ions  were found to yield better fits with data  than 
non- l inear  equations.  In Table 5, it is demonst ra ted  that 
values of V calculated using equat ion  (12) give good 
agreement with the observed values for Hg (within 
0.05%) over the pressure range 1-12 kbar. 
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