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The temperature dependence of the specific volume for polyethylene (PE) and poly(cyclopentyl
methacrylate) (PC5MA) over 100-300 K for PE and 10-140 K for PCSMA, and for the rare gas solids
argon (Ar), krypton (Kr) and xenon (Xe) over 4-83 K for Ar, 4-115K for Kr and 5-150 K for Xe has
been studied. Also, the pressure dependence of the specific volume for PE and poly(methyl methacrylate)
(PMMA) over the pressure range up to 30 kbar for PE and 2 kbar for PMMA and for rare gas solids up
to 30 kbar at low temperatures (4-150 K) has been studied. The temperature and pressure dependences
have been examined using an equation derived by the homogeneous function method. The relationship
for the temperature dependence used in this work is given by

InT=A4,Z" T=1
and that for the pressure dependence by
Vo/V =B(THP + P(T))™

where A4,, n, and m, are constants, B,(T) and P_(T) are functions of temperature, ¥, is the volume at
atmospheric pressure and Z is defined by Z = {V — V(0)}/V where V(0) is V at 0 K. Values of n, for
polymers and rare gas solids are in the range of 0.099-0.17 with n, = 0.13, while m, values are in the range
of 0.14-0.25 with m, =0.17 for the rare gas solids and 0.07-0.14 with m, =0.099 for polymers. The
Grilineisen parameter 7, defined by Slater is calculated from the equation of state in this work; yg = 4.89
for polymers and 2.78 for rare gas solids. The difference in y; for the rare gas solids and polymers is
explained by taking into account the volume dependence of the heat capacity.

(Keywords: equation of state; rare gas solid; Griineisen parameter; homogeneous function method; thermal expansion

coefficient; isothermal compressibility)

INTRODUCTION

The equation of state for polymers and rare gas solids
under an extremely low temperature and high pressure
is very important for understanding thermodynamic
properties of solids such as thermal expansion or the
vibration of molecules. The Griineisen equation of state
is the most famous' and involves the Griineisen
parameter yg, which is a useful quantity for describing
the volume dependence of vibrational frequencies in
solids and is determined by various methods based on
thermodynamic and spectroscopic data. For polymers
PVT and heat capacity data are essential. Extensive
experimental studies on the PVT properties of rare gas
solids such as argon (Ar), krypton (Kr) and xenon (Xe)
over a wide range of temperatures and pressures have
been carried out?~!!. Similar studies have been carried
out for polymers' 8. The importance of intermolecular
interactions in polymers in the evaluation of yg has been
discussed previously'®=2! with the interchain heat
capacity, Cy ;ner» being used instead of the heat capacity
at constant volume, Cy. The volume or temperature
dependence of y; has been discussed elsewhere??~24,
One main purpose of this work is to establish a simple
empirical equation for the temperature and pressure
dependence of the specific volume at low temperatures
and high pressures based on the experimental data
available. An essential difference between y for polymers
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and rare gas solids is discussed based on a general ex-
pression for ¢ derived from thermodynamic expressions.

DERIVATION OF THE EQUATION OF STATE
BASED ON THE HOMOGENEOUS FUNCTION
METHOD

A general procedure to derive a thermodynamic function
such as f(V, T), from a derivative, such as (Jf/0V)r,
based on the homogeneous function method is presented.
It is assumed that the function f(V, T) is constant or
zero at 0 K and expressed by:

SV, Ty=aV(@f/aV){[V - VO1/V}* +9(T) (1)

where a and b are constants, g(T) is a function of
temperature and V(0) is a constant volume, such as V
at 0 K. By differentiating equation (1) with respect to
volume at constant temperature:

(@f 10V )r = a(df |0V WZ® + aV[2(8f /0V)/6V] 2"

+aV (6f/oV )tbZb~ 1 (0Z/0V )¢ 2)
where Z is defined by
Z=[V-VO)yVv 3)

By dividing equation (2) by aV (df/@V );Z°, which is not
zero if V # V(0) and then integrating with respect to
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Figure 1 Plot of V' ! rersus (In T)"'* for Kr at saturated vapour
pressure?

volume at constant temperature, then:
Vv

(@f/eV)y=C(TWVZ") ' expa™! J (VZh)~ ' dV(4)
Vo)

and from equations (1) and (4):

| 4

f(V.T)=C(T)aexpa? J (VZ') ' dV +g(T) (5)

V(0)
Also, from equations (4) and (5):
(&ficV)p={f(V, T)=g(T)}/{a(V 2}

In the case of /=T, from the definition of the thermal
expansion coefficient ap:

@TV)p = (2pV) " (6)
By using equation (5) and assuming g(P) =0, equation
(6) leads to:

apT = Ay Z™ 7)

where A, and n,, are constants. In the case of isothermal
compressibility, using the same procedure as for xp:

(FP/AV )= —(VBy) ! (8)

(EP/EV )= —C(T)VZ)™!
v
x exp{—ml_1 j (vzhy! dV} 9)

Vo

Because i #0 at 0 K, it is determined that b, =0 and
therefore:

(CP/CV )y = —{CU(T)/ Vo J(VIVy) ™ =1 (10)
and P is given, using equation (10), by:

P=m C(T)VV,)™™ — P(T) (an

where m, is a constant and C,(T)and P (T) are functions
of temperaturc. It is useful to rewritc equation (11) as:

(Vo/V)=B(T)HP + P(T)y™ (12)

where B, (T)=[m,C,(T)]™™. On the other hand, the
temperature dependence of the specific volume V is
derived from equation (7):

v

lnT=lnT0+A0"J (VZry-tdv o (13)

Vio)
and is given approximately by:
InT=A4,4'""=A,2"

where n, =1 —nq, A, = {(1 —ny)A,}

T>1 (14)
Yand Ty =1K.

RESULTS

Typical plots based on equations (12) and (14) and
experimental data available for polymers and rare gas
solids are shown in Figures 1 4. The values of constants
and indices determined by best fit arc given in Tables 1
and 2. Values of n, for polymers and rare gas solids are
in the range of 0.099-0.17 with n, = 0.13, while m, values
are in the range of 0.14-0.25 with m, = 0.17 for the rare
gas solids and 0.07 -0.14 with m, = 0.099 for polymers.
The term ;; defined by Slater?® is expressed as:

o= —(176)+ (1;2)(Cn pyi¢ In V), (15)

The 74, calculated using equations (10) and (15) is given
by:

7. =(2m) 1= (1/6) (16)

and 75, = 4.89 for polymers and 2.78 for rare gas solids.

DISCUSSION
An original expression for ;g is given by:
7= —(dlogv;;/dlog V) (17)

where v, ; is the frequency of the normal mode and is
reduced to a more useful expression by using the thermal
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Figure 2 Plot of V™! rersus (In T)*'° for PE (32 days)'*
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1.6 pressure coefficient yy;
76 = Viv/Cy (18)
- Wada et al.'® proposed yg for a polymer crystal:
Yo = VyV/CV.inler (19)
where Cy iy is the interchain heat capacity of
LS the polymer. By using the thermodynamic relation
(éS/8V)r =yy and a similar procedure as in equations
(1)-(5), the following relation is derived:
v
_ yv=C2(T)(Z”‘/V)expa{‘J Zovdy  (20)
? ¥(0)
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Figure 3 Plot of In V! versus In(P + 5.44) for Xe at 30 K® Figure 4 Plot of In V™! versus In(P + 3530) for PE at 296.2K'*
Table 1 The constants and indices in equation (14) for rare gas solids and polymers
Temperature
A, n, V() (cm®g™') P (kbar) range (K) Ref.
Kr 6.63 0.140 0.3233 SVP 4-115 3
Ar 6.08 0.128 0.5646 Svp 4-83 2
Ne 4.57 0.116 0.6635 SvpP 3-235 4
Xe 6.88 0.138 0.2645 SvpP 0-75 28
7.44 0.164 0.2643 0 0-150 9
797 0.159 0.2526 2 0-150 9
8.07 0.149 0.2435 4 0-150 9
8.46 0.156 0.2361 6 0-150 9
8.60 0.153 0.2300 8 0--150 9
8.60 0.150 0.2247 10 0-150 9
PC5MA*® 7.84 0.115 0.8388 10-140 16
PCHDMT? 8.94 0.135 0.7986 10- 140 16
PE (32 days)* 797 0.109 0.9524 93-333 15
PE (2.5 h) 7.84 0.104 0.9538 93-333 15
PE(Quench) 7.81 0.103 0.9542 93-333 15
Oxidized PE 8.29 0.141 0.9662 0.001 296-424 29
8.04 0.126 0.9599 0.72 296-424 29
8.27 0.128 0.9469 2.10 296-424 29
7.90 0.109 0.9422 2.79 296--424 29
PE(mono) (A) 0.105 100-300 30
PE(ortho) (A) 0.100 100-300 30

aPCSMA, poly(cyclopentyl methacrylate)
>PCHDMT, poly-1,4-cyclohexylene dimethylene
“Crystallization for 32 days at 402.9 K

3172 POLYMER, 1991, Volume 32, Number 17



Equation of state and Griineisen parameter: S. Saeki et al.

Table 2 The constants and indices in equation (12) for rare gas solids and polymers

Vo
T (K) m fem*g
‘He 42 0.232 4.240
*He 42 0.241 4.387
N, 65.0 0.192 1.046
H, 4.0 0.228 11.240
D, 4.0 0.231 4.851
Ne 40 0.166 0.694
Xe 0.0 0.166 0.264
30.0 0.164 0.267
64.0 0.160 0.272
90.0 0.160 0.279
130.0 0.150 0.286
160.0 0.142 0.294
Kr 4.0 0.158 0.323
20.0 0.154 0.325
40.0 0.149 0.329
770 0.148 0.341
90.0 0.145 0.346
110.0 0.145 0.355
Ar 40 0.159 0.565
20.0 0.159 0.567
40.0 0.156 0.577
60.0 0.148 0.592
77.0 0.148 0.608
PE 296.2 0.113 1.091
PE 298.7 0.123 1.087
PE 2927 0.07t 1.021
PE(high M,) 2919 0.088 1.078
PE(branched) 2923 0.085 1.072
PE(branched) 341.7 0.082 1.112
PE(branched) 382.8 0.098 1.194
PE(DA)* 293.0 0.087
PE(DA) 2930 0.142
PE(DA) 2930 0.088
PE(CEC)" 293.0 0.107
PE(MA)‘ 298.0 0.096 -
PE(CEC) 403.0 0.116 -
PE(oxidized) 296.2 0.097 1.036
3232 0.100 1.043
PCHMAY 291.8 0.089 0.908
PMMA* 290.4 0.103 0.844

“DA. drawn and annealed

PCEC. chain-extended crystal, isothermally crystallized at 5000 kg cm "2
‘MA, moulded and annealed (unoriented)

¢PCHMA, poly(cyciohexyl methacrylate)

‘PMMA, poly(methyl methacrylate)

The C, is related to yy through:
(Cy/eV ) =T(3pviCT)y (21)

A general expression for Cy, as a function of temperaturc
and volume is given by:

.
Cy = J (ECy/CV ) dV + j

Vo) 6]

1

(6Cy/éT) dT  (22)

By using the assumptions that Cy = Cy(V, T)+ Cy(T)

P, Maximum P

(bar) B, (kbar) Ref.
154 0.267 20.00 7
177 0.249 20.00 7

2708 0.219 18.64 6
579 0.233 19.62 6
922 0.206 19 62 6

1972 0.283 19 62 6

6330 0.235 20 00 9

5440 0.244 20.00 9

4690 0.259 20.00 9

4030 0.265 20.00 9

2820 0.301 20.00 9

2170 0.336 20.00 9

5550 0.256 20.00 9

5050 0.269 20.00 9

4460 0.287 20.00 9

3410 0.300 20.00 9

2890 0.314 20.00 9

2405 0.323 20.00 9

4800 0.260 20.00 9

4615 0.261 20.00 9

3880 0.276 20.00 9

2970 0.307 20.00 9

2450 0.315 20.00 9

3530 0.3976 30.00 14

4580 0.3550 30.00 12

3180 0.5652 2.00 31

2540 0.5105 200 31

2540 0.5154 2.00 31

1430 0.5512 2.00 31
730 0.5261 2.00 3t

4250 0.4834 294 18

8970 0.2739 7.85 18

3460 0.4900 3.90 17

4080 04118 190 17

5960 0.4325 1270 32

4080 0.3584 190 17

4970 0.4381 4.00 29

4720 0.4305 4.00 29

3480 0.4829 2.00 31

31

3885 0.4287 2.00

and vy = 7(T)yy(V) for equation (20), then:
76! =2[dInyy(T)/dIn T]/[dIn S(V)/dIn V]
+ CT)/ Vo (23)

where the entropy S(V) is defined by S(V) = [}o, 7v(V)dV
and equation (21) is used. The first term in equa-
tion (23) is a contribution from C.(V,T) in Cy or
Vo) (@Cy/aV) dV =T [Ui, (@7v/T)y dV, while the
second term is from Cy(T)in Cy = Cy(V. T)+ C(T). In
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Table 3 The constants and indices in equation (24)° for rare gas solids and PE at constant volume

V (cm3 mol " 1)* A, x10° B, ko Ref.
Ar 19.00 0.07 9.38 2.20 11
20.00 0.49 5.39 1.79 11
21.00 1.32 2.63 1.59 11
22.00 2.08 0.72 1.51 11
Xe 29.00 490 13.00 1.23 11
30.00 3.73 9.22 1.29 11
31.00 3.70 6.33 1.29 11
32.00 473 4.03 1.27 11
33.00 485 2.19 1.25 11
34.00 5.2§ 0.81 1.23 11
Kr 23.00 2.68 8.08 1.55 11
24.00 2.68 6.31 1.41 11
25.00 437 1.53 1.31 11
26.00 5.90 1.53 1.25 11
27.00 2.30 1.56 1.31 11
PE(linear) 1.02 111.6 x 1077 -1.03 2.84 31
1.03 2.55x 1077 —1.10 3.45 3
PE(high M,) 1.07 65.5x 1077 —0.87 3.34 31
PE(branched) 1.07 31.8x 1077 -1.02 3.46 31
PE(high M, 1.09 295x 1077 —1.04 3.83 31
1.10 0.77 x 1077 —1.19 405 31
1.11 0.166 x 1077 —-1.22 4.29 31
?Unit of P in equation (24) is kbar
*Unit for PE iscm3g™!
Table 4 The values of Cy(V, T) calculated by using equation (26) and the ratio Cy(V, T)/Cy . for krypton and PE
Temperature (K) Cy(V, T) (calmol ' K™ Cyrom Cy(V. (%) T)/Cy rom Ref.
Krt 10 0.0009 1.4098 0.06 3
20 0.0060 3.71158 0.16
40 0.0314 5.1537 0.609
60 0.0711 5.4487 1.31
80 0.1250 5.5060 2.27
100 0.1950 5.5320 3.52
PE¢ 195 0.0070 0.2620 2,67 33
303 0.0736 0.3820 19.30

“Unit for PEiscalg™' K ™!
bko=1.31, A, =230x 1073, ¥, =27.093 cm®* mol~! for V =27.0cm>® mol~

1

‘hko=334,4,=6.55x 107" V,=0947cm?3 g~ ! (ref. 34) for V =1.07cm? g~ ' and PE(high M,)*!

estimating two terms in equation (23), the temperature
dependence of yy at constant volume is necessary. The
experimental data of the P versus T line at constant
volume are expressed approximately by:

P=A,T* 4+ B,(V) V = constant (24)
where A, and k, are constants and B,(V/) is a function
of volume. Values of 4,, k, and B,(V) are listed in Table
3 where k, for rare gas solids is in the range of 1.2-2.2,
while that for polyethylene (PE) s in the range of 2.8-4.3.
Equation (23) may be expressed using equation (24):

76! =201(kg — DZ7P + Cu(T)/Vyy (25)

where S(V)=a, expa; ! [V, ZP/V dV is used. Tt is
possible to evaluate Cy(V, T') from the experimental data
of P versus T at constant volume by using equations (21)
and (24):

Cy(V, T) = Azko(ko — DT H{V = V(0)}  (26)
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The typical values of Cy(V, T) from equation (26) are
shown in Table 4 where the ratio Cy(V, T)/Cy ora =
0.06-3.52% for Kr and 2.7-19.3% for PE, and both
ratios increase with increasing temperature. Although the
contribution of Cy(V, T) to Cy ., is small in both cases,
the contribution of Cy(V, T) to 75 through equation (23)
is not always negligible because 75 relates to k, in
equation (25)and not to Cy(V, T)directly. It is interesting
to point out that the ratio of Cy ., for the interchain
contribution for Cy,.. reported by Warfield*® for
various polymers is in the range of 6-21%, which
compares with that of Cy(V, T')/Cy o1 for PE. We cannot
determine the first term in equation (25) because a; is
unknown. However, the first term becomes negligible if
k¢ is nearly equal to 1.0, which means yyv = f(V) and
Cy = g(T) and therefore yg =y V/Cy(T) = yyV/Cy. On
the other hand, if the first term in equation (25) is
dominant, yq is given by y5 = Z%/[2x,(kq — 1)] where
ko > 1.0. 1t is suggested that the former case corresponds
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Figure 5 Plotof P, versus T from equation (12) for Xe (O)and Kr (A).
The empirical equation for P_ is P_y. =6.34 —2.57 x 107 2T for Xe
and Py, =5.65 297 x 107 2T for Kr

to rare gas solids while the latter corresponds to
polymers.

[t is important to determine the functions such as P (T)
in equation (12) and B,(V) in equation (24). In Figure
5 P.(T) is plotted against temperature and linearity is
observed for Kr and Xe. The function P, (T)is given by:

P(T)=P o—C,T (27)
The term B,(V') from equation (24) is given by:
B,(V)=P(V)-o (28)

where P(V ), .4 is the P(V) function at 0 K and using
equations (12) and (27) is given by:

P(V)r—o=[B{'V(T=0,P=0)/V(0,P)]""" — P, (29)
It 1s very interesting to refer to the equation of state

derived by many authors. Gilvarry has given an
isothermal equation of state, which can be expressed as?>:

P=(n—m) 'Ko[(Vo/ V) = (Vo/ V)] (30)
where K, is the bulk modulus corresponding to the
normal volume V,,, and »n and m are constants. The bulk
modulus K = 7! from equation (30) is:

K=n-m "Ky[n(Vy; VY —m(Vo,/V)"]  (31)
The Birch equation of state is obtained from equation
(30) with n=7:3 and m = 5/3, which was derived from
Murnaghan’s theory of finite strain?®. Murnaghan?’
derived the equation of state such that:

P=n Ky[(Vo; V) —1] (32)

which corresponds to equation (30) with m =0. On the
other hand, the usual Tait equation has been written in

Table 5 Comparison between the experimental values of specific
volume for H; and calculated values from equation (12)

V at 21.9°C (exp.) Ve (calc.)

P (kbar)
1 1.000180 1.00001
2 0.996209 0.99618
4 0.988996 0.98891
6 0.982254 0.98210
8 0.975916 0.97569
10 0.969933 0.96965
12 0.964262 0.96393

“¥ = 1.52496(P + 30.418)~ 91224 in P (kbar) wherc V (exp.)- P data is
taken from the unrounded Davis-Gordon P versus V results®® for H,.
The volume is not measured directly

the form??:
Vo—V=CIn[(B+ P)/(B+ Py)] (33)

where B and C are constants with respect to pressure
and Pyis P at V=1V,

Equation (12) in this work is similar to equation (32)
if equation (32) is arranged to (P+n 'Ky)=
n"'Ky(Vo/V)". Macdonald?? has examined some experi-
mental and analytical equations of state including four
different polynomial equations and seven non-linear
equations based on the recent water and mercury (Hg)
isothermal data and stressed that certain polynomial
equations were found to yield better fits with data than
non-linear equations. In Table 5, it is demonstrated that
values of V calculated using equation (12) give good
agreement with the observed values for Hg (within
0.05%) over the pressure range 1-12 kbar.
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